Lunes a viernes de 9:30 a 19 hrs.
Sábados de 10 a 14 hrs. (llamar para confirmar horario por temporada)
Libros relacionados
Título:Non-Divergence Equations Structured On Hörmander Vector Fields. Heat Kernels And
Autor:
Precio: $873.36
Editorial:
Año: 2009
Tema:
Edición: 1ª
Sinopsis
ISBN: 9780821849033
In this work the authors deal with linear second order partial differential operators of the following type H=\partial_{t}-L=\partial_{t}-\sum_{i,j=1}^{q}a_{ij}(t,x) X_{i}X_{j}-\sum_{k=1}^{q}a_{k}(t,x)X_{k}-a_{0}(t,x) where X_{1},X_{2},\ldots,X_{q} is a system of real Hörmander's vector fields in some bounded domain \Omega\subseteq\mathbb{R}^{n}, A=\left\{ a_{ij}\left( t,x\right) \right\} _{i,j=1}^{q} is a real symmetric uniformly positive definite matrix such that \lambda^{-1}\vert\xi\vert^{2}\leq\sum_{i,j=1}^{q}a_{ij}(t,x) \xi_{i}\xi_{j}\leq\lambda\vert\xi\vert^{2}\text{}\forall\xi\in\mathbb{R}^{q}, x \in\Omega,t\in(T_{1},T_{2}) for a suitable constant \lambda>0 a for some real numbers T_{1} < T_{2}.
Table of Contents
Introduction
Part I: Operators with constant coefficients
Overview of Part I
Global extension of Hörmander's vector fields and geometric properties of the CC-distance
Global extension of the operator H_{A} and existence of a fundamental solution
Uniform Gevray estimates and upper bounds of fundamental solutions for large d\left(x,y\right)
Fractional integrals and uniform L^{2} bounds of fundamental solutions for large d\left(x,y\right)
Uniform global upper bounds for fundamental solutions
Uniform lower bounds for fundamental solutions
Uniform upper bounds for the derivatives of the fundamental solutions
Uniform upper bounds on the difference of the fundamental solutions of two operators
Part II: Fundamental solution for operators with Hölder continuous coefficients
Assumptions, main results and overview of Part II
Fundamental solution for H: the Levi method
The Cauchy problem
Lower bounds for fundamental solutions
Regularity results
Part III: Harnack inequality for operators with Hölder continuous coefficients
Overview of Part III
Green function for operators with smooth coefficients on regular domains
Harnack inequality for operators with smooth coefficients
Harnack inequality in the non-smooth case
Epilogue
References