Lunes a viernes de 9:30 a 19 hrs.
Sábados de 10 a 14 hrs. (llamar para confirmar horario por temporada)
Libros relacionados
Título:
Autor:
Precio: $935.61
Editorial:
Año: 2009
Tema:
Edición: 1ª
Sinopsis
ISBN: 9780821846551
Let f_1, f_2, \ldots, f_n be a family of independent copies of a given random variable f in a probability space (\Omega, \mathcal{F}, \mu). Then, the following equivalence of norms holds whenever $1 \le q \le p < \infty, ( \int_{\Omega}[ \sum_{k=1}^n |f_k|^q ]^{p/q} d \mu )^{1/p} \sim \max_{r \in \{p,q\}} \{ n^{1/r}( \int_\Omega |f|^r d\mu)^{1/r} \}. The authors prove a noncommutative analogue of this inequality for sums of free random variables over a given von Neumann subalgebra. This formulation leads to new classes of noncommutative function spaces which appear in quantum probability as square functions, conditioned square functions and maximal functions.
Table of Contents
Introduction
Noncommutative integration
Amalgamated L_p spaces
An interpolation theorem
Conditional L_p spaces
Intersections of L_p spaces
Factorization of \mathcal {J}_{p,q}^n(\mathcal {M}, \mathsf {E})
Mixed-norm inequalities
Operator space L_p embeddings
Bibliography